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Communications to the Editor 

Diazocarbonyl Compounds and 1-Diethylaminopropyne 

Sir: 

1,3-Dipolar cycloadditions of diazomethane are HO (dia-
zomethane)-LU (dipolarophile) controlled;1 enamines and 
ynamines with their high LU energies do not react. Introduc­
tion of carbonyl functions into diazomethane lowers the orbital 
energies to such an extent that the diazoacetic ester and dia-
zomalonic ester are type II 1,3 dipoles in Sustmann's classifi­
cation,2-3 and concerted cycloadditions to enamines4 and 
ynamines become feasible through HO (dipolarophile)-LU 
(diazoalkane) interaction. The only reported addition to an 
ynamine is that of diazofluorene and 1 -diethylaminopropyne 
affording a spiroadduct (6 h, 80 0C, 22%) of which the addi­
tion direction was not clarified.3 
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Methyl diazoacetate and I-diethylaminopropyne furnished 
in refluxing hexane (6 h) the oily aminopyrazole 1 in 89% 
yield:6 bp 140-150 0C (0.3 mm); NMR 5 2.25 (s, 5-CH3), 3.85 
(s, OCH3), 12.4 (br, NH). Alkaline hydrolysis and decar­
boxylation (310 0C) produced 4-diethylamino-5-methvlpy-
razole (2). The sharp NMR singlets for 5-CH3 (<5 2.21) and 
3-H (7.35), i.e., the absence of allyl coupling, would not be 
consistent with the product of the opposite addition direction 
(J = 0.5 Hz for the isomeric 3-diethylamino-5-methylpyra-
zole). Further evidence comes from the linking with the dia-
zomalonic ester adduct. 

Dimethyl diazomalonate reacted with the ynamine in ether 
at 0 0C to give 66% bright yellow needles of the 3W-pyrazole 
3: mp 77-78 0C; NMR 6 1.15, 3.40 (t and q, J = 7.0 Hz, 2 
NCH2CH3), 2.48 (s, 5-CH3), 3.79 (s, 2 OCH3). Aromatiza-
tion makes one ester group of 3 subject to nucleophilic removal. 
In cold methanol (4 weeks), faster in diethylamine, 3 is 
quantitatively converted to 1. 
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Reduction of the azo bond in 3 with sodium borohydride in 
methanol at 0 0C yielded via the ene-hydrazine the cyclic 
hydrazone 4 (95%). The NMR singlets for 3-CH3 (<5 1.97) and 
4-H (4.97) established the original addition direction as did 
the methanolysis which rendered 74% methyl 3-methylpyra-
zole-5-carboxylate (5), identical with the product from dia-
zoethane and methyl propiolate. The ester groups of 4 are 
nonequivalent (5 3.32, 3.43) and the NCH2 protons are dia-
stereotopic. 
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The thermal van Alphen-Hiittel rearrangement7-8 of the 
3/y-pyrazole 3 to the aromatic 1,5-dicarboxylic ester 6 was 
complete after 15 h refluxing in hexane; ?i/2 = 30 days at 25 
0C. The high IR frequency of 1756 cm -1 and the high 5 4.02 
are typical for NCO2CH3. Under the conditions of distillation, 
180 0C (12 mm), 6 underwent a further 1,5-sigmatropic shift, 
until a 1:3 equilibrium of 6 and 7 was established: mp (7) 46-48 
0C; NMRS 3.90, 4.05 (2 s, 2 OCH3). The singlet of 3-CH3 in 
6 (5 2.23) is deshielded in 7 by the vie. ester group and shows 
up at 5 2.48. Diethylamine converts both 6 and 7 to the dia­
zoacetic ester adduct 1 and methyl iV,iV-diethylcarbamate. 

The fast cycloaddition of methyl diazo(phenylsulfonyl)-
acetate in ether at 0 0C afforded quantitatively the oily 3H-
pyrazole 8 which shows a low-field NCH2 at 5 4.04 (8 3.40 in 
3). A phenylsulfonyl shift occurred at room temperature and 
produced 9 and 10 in a 7:2 ratio. Methanolic sodium hydroxide 
(not diethylamine) produced 83% 1 from 9 and 10. 
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The addition of methyl diazoacetate to methyl propio­
late—not described before—yielded 88% dimethyl pyrazole-
3,5-dicarboxylate (3 days, 25 0C). This addition direction is 
opposite that which diazocarbonyl compounds display toward 
enamines4 and ynamines which invariably furnish 4-amino-
substituted pyrazolines or pyrazoles. The bidirectionality of 
these 1,3 dipoles is incompatible with diradical intermediates. 
It is not mandatory that ethylenes and acetylenes with elec­
tron-attracting substituents accept the 1,3 dipole in one di­
rection, whereas those with electron-releasing substituents use 
the other addition direction. PMO theory3-9-10 and experiment 
reveal that the switching of the orientation can occur at every 
place on the scale of electron density of the ethylenic or acet-
ylenic bond, dependent on the nature of the 1,3 dipole. 

Ethoxyacetylene does not react with diazoacetic ester, but 
combines with diazomethane to give 4-ethoxypyrazolc, 
whereas ethylthioacetylene gives rise to 3-ethylthiopyrazole.1' 
3-Alkylpyrazoles result from diazomethane and 1-alkynes.'2 

Thus, diazoalkanes appear to display the orientational 
switching between acetylenic thioethers and ethers. 

The diagrams below offer the CNDO/2 calculated13 atomic 
orbital coefficients c of the allyl anion MO, which is incorpo-
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rated in the 1,3 dipole, and those of the ynamine. The orbital 
energies were estimated on the basis of ionization potentials, 
•K —• 7T* transitions and electron affinities.14 Both frontier 
orbital interactions favor the same orientation, the one ex­
perimentally observed, although the first interaction is domi­
nant Owing to the smaller energetic separation. 

Are we dealing with a one-step cycloaddition or with the 
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reaction via a zwitterionic intermediate? We measured the 
dependence of the rate constant on solvent polarity, based on 
the IR diazo absorption at 2129 cm -1, for diethylaminopro-
pyne + dimethyldiazomalonate and observed a small positive 
effect (105Ar2 (L mol"1 s"1) at 80.3 0C): decalin, 42; toluene, 
45;dioxane, 41; chlorobenzene, 69; HMPTA, 132; DMF, 158; 
Me2SO, 265. When log k2 was plotted vs. the empirical po­
larity parameter £T , 1 5 a linear function (r = 0.95) resulted. 
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Whereas the data rule out a zwitterionic intermediate, the 
question of transition-state polarity still deserves attention. We 
determined the dipole moments of reactants and adduct 
(benzene, 25 0C). The log Zc2 values above fit fairly well a linear 
relation with (e - 1 )/(2e + 1) with t being the dielectric con­
stant of the solvent. Based on the Kirkwood-Laidler-Eyring 
equation,16 we calculated from the slope of the line and from 
the dipole moments and molecular volumes of the reactants 
the dipole moment of the transition state, /J. = 6.6 D.17 Unequal 
bond formation in the transition state of the concerted cy-
cloaddition induces, in accordance with the PMO treatment, 
a partial charge separation which exceeds that of the cy­
cloadduct slightly. 
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skeletal carbon atoms are sp2 hybridized which is incompatible 
with a cycloadduct. The ketene O.iV-acetal structure 4 was 
suggested by the base-catalyzed methanolysis which provided 
97% pyrazole 31 besides methyl diphenylacetate and dimethyl 
carbonate. The similarity of the NMR spectra of 3 and 4 allude 
to an aromatic pyrazole ring in 4. The IR absorption at 1777 
cm -1 is assigned to the enol ester carbonyl and the weak band 
at 1659 cm -1 to the CC double bond. 
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The diethylamino group confers nucleophilicity on the 
heterodiene system of 1. In a likely mechanism, diphenylketene 
attacks at N-I and affords the iminium enolate zwitterion 2. 
Now the anionic oxygen takes over an ester group from the 
quaternary carbon atom, a process which is facilitated by the 
aromatization of the heterocycle. 
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At 100-110 0C 4 was smoothly cleaved, whereby diphen­
ylketene was distilled under high vacuum and furnished 98% 
methyl diphenylacetate with methanol. The residue turned out 
to be pure 1,3-dicarboxylic ester 5 which is formed irreversibly; 
5 is inert to diphenylketene. The thermal aromatization of the 
3//-pyrazole 1 by a twofold 1,5-sigmatropic shift, 1 -* 6 — 5, 
was described in the preceding communication; the second step 
requires ~180 0C and results in a 1:3 equilibrium of 6 and 5.1 

Thus, 1 cannot be an intermediate in the conversion of 4 to 5 
+ diphenylketene. 

The ketene acylal group in 4 is an acylating reagent. In the 
return of the ester group to C-5, i.e., the regeneration of 1, the 
pyrazole aromaticity would be sacrificed. However, the 
transfer of the ester group to N-2, starting from the rotamer 
4A, offers an attractive pathway. Had we carried out the re­
action of 1 with diphenylketene at 100 0C, a mere isomeriza-
tion, 1 —»• 4, would have been observed. 

Conducted Tour Mechanism of Ester Group 
Migration in a 3H-Pyrazole 

Sir: 
Dimethyl 4-dimethylamino-5-methyl-3//-pyrazole-3,3-

dicarboxylate (I) ' and diphenylketene in ether at 25 0C pro­
duced quantitatively the colorless crystals of a 1:1 adduct, mp 
72-73 0C.2 The 13C chemical shifts indicate that all five 
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